Understanding Track Weight

Author: Jeff Platt

Date Last Modified: October 14, 2007

 

Introduction

Back in 2001, when I first started wrapping my head around taking concepts like track weight and speed and shaping models into the JRating algorithm, PolyTrack didn't exist. All dirt tracks (taken as a whole) seemed to share one common trait: Horses with early speed enjoyed a distinct advantage over horses without it.

 

As a result I was able to create one JRating algorithm for dirt and another for turf. I then applied these two algorithms to all tracks everywhere. For the past several years that approach has let me (and many other JCapper users) enjoy almost universal success simply by playing JRating rank = 1 horses under a wide variety of circumstances.

 

When I set about developing JPR in early 2005 I used very similar thinking to what I did when I created the JRating. I created one JPR algorithm for dirt and a second algorithm for turf. And it worked pretty much everywhere I wanted to play.

 

The advent of PolyTrack changes that. It plays differently than plain old dirt. Horses running on or near the lead on PolyTrack no longer have an advantage over their rivals. Instead, horses with early speed on PolyTrack, unless they are in a race with little or no pace pressure, are at a disadvantage. I am convinced that poly is different enough that it deserves treatment as a separate surface.

 

As I write this (October, 2007) horses are now racing on artificial surfaces at the following Bris track codes: APX-DMR-HOL-OSA-PID-SAX-TPX-WOX. PolyTrack has become prevalent enough throughout racing that universal Data Window samples/results have become noticeably different from what they used to be.

 

We can argue about reasons both for and against PolyTrack until we are blue in the face. But the simple truth is this: It is now part of the game. There is a belief among horsemen that artificial surfaces are safer for horses to race on. Wait. It gets better. I have seen track management at some tracks have their maintenance crews change dirt surfaces that have historically favored early speed into deeper more tiring surfaces that now favor closers.

 

In my opinion the game is currently undergoing a landscape change.

 

Universal data samples of the type used as a basis for creating the My-Edge UDM in the Finding an Edge Help Doc need to be examined more closely. I have come to believe that UDMs and UPR should really be modeled on a track by track basis.

 

Not all racing surfaces are created equal. If you have ever undertaken the project of trying to measure track weight you know how complicated things can get in a hurry. You can get bogged down analyzing historical samples broken out by a myriad of factors. In JCapper we have CPace, PctE, V1, DecelFactor, ClosingRatio, AvgE1, BestE2, PAL, TPace, Late3, Running Style, Q Speed Points, Rail Position, and many others. All of them have some degree of effectiveness when trying to nail down a track profile. When trying to profile a track it’s easy to lose yourself in complexity.

 

The reason I decided to do a write up on track weight is that it doesn’t have to be that way. I wanted to present a process for working with track weight – a way that is both simple and workable – so that JCapper users everywhere could understand track weight and get a handle on using it when creating UDMs and UPR.

 

Racing Surface Categories

Every racing surface can be described as fitting into one of the following simple categories:

 

Category                Description

1.                                           Favors early speed strongly

2.                                           Favors early speed somewhat

3.                                           Plays fair

4.                                           Favors closers somewhat

5.                                           Favors closers strongly

 

The thing that confuses most players is that surfaces are not always consistent. A surface might play as a category 1 or 2 one meet and then behave as a category 4 the next. Sometimes, because of weather and track maintenance, this even happens from one week to the next.

 

But the player who is able to accurately recognize the prevailing current tendency of the racing surface(s) he or she is playing on is the player who can get a significant edge over his or her competition.

 

There are two things most players lack:

  1. A simple workable way to measure and understand (what category) how a given racing surface has been playing.
  2. Understanding how to take advantage of that knowledge.

 

 

Measuring Track Weight (Establishing a Benchmark)

The first step in understanding track weight is to establish a few benchmarks for each racing surface category. To this end I am going to present a simple UDM designed to do nothing more than help you measure track weight.

 

The theory behind my thinking is pretty simple. Run the Track Profiler UDM against a large sample (all tracks everywhere) to establish a benchmark. Then run the UDM against smaller samples (individual racing surfaces for specific time periods) to get snapshots representing a current track profile. Compare the two and categorize the individual racing surface based on the severity of any differences noted.

 

Horses that rank 1-3 in CPace vs. a given field are generally those with early speed. The idea behind my Track Profiler UDM is to provide a solid way of measuring the effectiveness of early speed horses. The UDM starts with factor constraints for CPace ranks 1-3. I chose ranks 1-3 rather than rank 1 only because ranks 1-3 provide more data to work with than rank 1 alone. You’ll see the importance of this once we dive into looking at smaller samples. For example, when playing a new track for the first time – I’ll often look at a track profile using just the most recent 3-4 days. In a case like that I want all the data I can get. CPace ranks 1-3 give me more to work with than CPace rank 1 alone. 

 

If you study my Track Profiler UDM, you’ll notice I’ve added factor constraints for PaceIndex, Race Volatility, and Late3 rank. I did this in the interest of establishing a tighter benchmark to refer back to later - because not all CPace rank 1-3 horses are the same. These factors do impact the win rates of CPace horses. I wanted to control them later when running my Track Profiler UDM against small samples (snapshots) for specific time periods at single tracks.

 

But in your own implementation – when you create a Track Profiler UDM of your own – feel free to roll your own. It is the concept of measuring smaller samples (snapshots) against larger samples (established benchmarks) that is important here. Please do not feel obligated in any way to let yourself get bogged down in the minutia of what I’m trying to present here.

 

Below are Data Window results for my own Track Profiler UDM run against my calendar year 2006 database on dirt surfaces only:

 

     UDM Definition:   TRACKPROFILER

     Divisor:          # UDM Def  Divisor: 999

     Surface Req:      *ANY Surface*

     Distance Req:     *ANY Distance*

     CPace:            MinRank= 1  MaxRank= 3  

                       MinVal= -999  MaxVal= 999  

                       MinGap= -999  MaxGap= 999

     Late Pace (last3) MinRank= 2  MaxRank= 5  

                       MinVal= -999  MaxVal= 999  

                       MinGap= -18  MaxGap= 999

     Pace Index:       MinVal= 80  MaxVal= 999

     Race Volatility:  MinVal= 75  MaxVal= 119.99

     Running Style:    ALL

 

     Data Window Settings:

     Divisor = 999   

     Filters Applied:

 

     Surface: (ALL*)  Distance: (All*)

    (From Index File: C:\2007\pl_CPace_123_2006.txt)

 

 

     Data Summary         Win     Place      Show

     Mutuel Totals   13317.60  13694.80  13391.50

     Bet            -15696.00 -15696.00 -15696.00

     Gain            -2378.40  -2001.20  -2304.50

 

     Wins                1574      3032      4121

     Plays               7848      7848      7848

     PCT                .2006     .3863     .5251

 

     ROI               0.8485    0.8725    0.8532

     Avg Mut             8.46      4.52      3.25

 

And there you have it. The above numbers represent the benchmark numbers I actually use when establishing categories for racing surfaces.

 

Measuring Track Weight (Snapshots)

I’m going to use two very different racing surfaces to illustrate how I go about taking snapshots to measure track weight. The first track is APX where PolyTrack debuted with the start of their 2007 racing season. The second track is BEL which runs their races on plain old dirt. Both tracks produced widely different results. But in both cases, the process for measuring and categorizing track surface was exactly the same.

 

Arlington Park 2007

Let’s start with Arlington. I started by using the Quick Index File Extract tool to create a Date Ranged Index for the first two weeks of their 2007 meet. I then ran my Track Profiler UDM through the Data Window using the date ranged index file – which gives me a snapshot of what happened during the first two weeks of the meet. Here’s what the data looks like:

 

     UDM Definition:   TRACKPROFILER

     Divisor:          # UDM Def  Divisor: 999

     Surface Req:      *ANY Surface*

     Distance Req:     *ANY Distance*

 

     CPace:            MinRank= 1  MaxRank= 3  

                       MinVal= -999  MaxVal= 999  

                       MinGap= -999  MaxGap= 999

     Late Pace (last3) MinRank= 2  MaxRank= 5  

                       MinVal= -999  MaxVal= 999  

                       MinGap= -18  MaxGap= 999

     Pace Index:       MinVal= 80  MaxVal= 999

     Race Volatility:  MinVal= 75  MaxVal= 119.99

     Running Style:    ALL

 

 

     Data Window Settings:

     Divisor = 999   

     Filters Applied:

 

     Surface: (ALL*)  Distance: (All*)

     (From Index File: C:\2007\APX\pl_From_05-04-2007_to_05-18-2007.txt)

     Data Summary         Win     Place      Show

     Mutuel Totals      14.60     25.00     39.20

     Bet               -46.00    -46.00    -46.00

     Gain              -31.40    -21.00     -6.80

 

     Wins                   2         6        11

     Plays                 23        23        23

     PCT                .0870     .2609     .4783

 

     ROI               0.3174    0.5435    0.8522

     Avg Mut             7.30      4.17      3.56

 

Now, compare the above results for Arlington to the benchmark results for all dirt surfaces in 2006. What do you see? Based on what you see, how would YOU categorize the PolyTrack surface at APX? Forget the roi for a second. Pay attention to the win percentages. My own interpretation is that this snapshot makes the APX surface look an awful lot like a surface in the category 5 range: Favors closers strongly.

 

How can I say this? Well the win rate for horses selected by my Track Profiler UDM (early speed) in the snapshot is dismal compared to my Benchmark. Some group of horses has to be hitting the wire first in every data sample. It’s kind of like that piece of childhood playground equipment called a teeter-totter or see-saw: If early speed horses aren’t winning the races – if their win rates are substantially depressed – then some other group of horses has to be winning the races at an elevated win rate: closers.

 

Remember that when I created the algorithm for dirt JPR I based it on dirt surfaces behaving as categories 1-3. Here’s that two week APX snapshot again, this time broken out by JPR Rank:

 

     Data Window Settings:

     Divisor = 999   

     Dirt (All*)  Distance: (All*)

     From Index File: C:\2007\APX\pl_From_05-04-2007_to_05-18-2007.txt

     Data Summary         Win     Place      Show

     Mutuel Totals    1300.00   1122.90   1134.80

     Bet             -1314.00  -1314.00  -1314.00

     Gain              -14.00   -191.10   -179.20

 

     Wins                  76       150       225

     Plays                657       657       657

     PCT                .1157     .2283     .3425

 

     ROI               0.9893    0.8546    0.8636

     Avg Mut            17.11      7.49      5.04

 

 

     By: JPR Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1     -47.80    150.00    0.6813     15     75   .2000     1.7289 

        2     -56.60    150.00    0.6227     11     75   .1467     1.2679 

        3       2.00    150.00    1.0133     10     75   .1333     1.1526 

        4      -7.60    150.00    0.9493      7     75   .0933     0.8068 

        5      13.00    150.00    1.0867     12     75   .1600     1.3832 

        6     -31.00    150.00    0.7933      6     75   .0800     0.6916 

        7      83.80    138.00    1.6072      8     69   .1159     1.0023 

        8       8.00    114.00    1.0702      3     57   .0526     0.4550 

        9      19.80     76.00    1.2605      2     38   .0526     0.4550 

       10     -22.80     46.00    0.5043      1     23   .0435     0.3759 

       11      39.20     26.00    2.5077      1     13   .0769     0.6650 

       12     -14.00     14.00    0.0000      0      7   .0000     0.0000 

       13       0.00      0.00    0.0000      0      0   .0000     0.0000 

       14       0.00      0.00    0.0000      0      0   .0000     0.0000 

       15       0.00      0.00    0.0000      0      0   .0000     0.0000 

       16       0.00      0.00    0.0000      0      0   .0000     0.0000 

       17       0.00      0.00    0.0000      0      0   .0000     0.0000 

       18       0.00      0.00    0.0000      0      0   .0000     0.0000 

       19       0.00      0.00    0.0000      0      0   .0000     0.0000 

 

If you’ve read the Foundations of Database Handicapping Help Doc then you know that win rates for the top ranked JPR horses in the above track profile snapshot are severely depressed. If early speed isn’t winning the races then something else must be.

 

How about late speed?

 

Here is that first two week Arlington track profile snapshot broken out by PAL (JCapper Pace Adjusted Late) –

 

 

     Data Window Settings:

     Divisor = 999   

     Dirt (All*)  Distance: (All*)

     From Index File: C:\2007\APX\pl_From_05-04-2007_to_05-18-2007.txt

     Data Summary         Win     Place      Show

     Mutuel Totals    1300.00   1122.90   1134.80

     Bet             -1314.00  -1314.00  -1314.00

     Gain              -14.00   -191.10   -179.20

 

     Wins                  76       150       225

     Plays                657       657       657

     PCT                .1157     .2283     .3425

 

     ROI               0.9893    0.8546    0.8636

     Avg Mut            17.11      7.49      5.04

 

 

     By: PAL Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1      41.80    156.00    1.2679     18     78   .2308     1.9949 

       2      -6.80    166.00    0.9590      9     83   .1084     0.9374 

        3     -36.40    152.00    0.7605      8     76   .1053     0.9100 

        4     -91.00    152.00    0.4013      8     76   .1053     0.9100 

        5     -23.40    140.00    0.8329      5     70   .0714     0.6175 

        6     -71.40    140.00    0.4900      5     70   .0714     0.6175 

        7     -31.40    134.00    0.7657      6     67   .0896     0.7742 

        8      17.20    116.00    1.1483      6     58   .1034     0.8943 

        9      48.60     80.00    1.6075      4     40   .1000     0.8645 

       10      68.80     50.00    2.3760      5     25   .2000     1.7289 

       11     -18.00     18.00    0.0000      0      9   .0000     0.0000 

       12      88.00     10.00    9.8000      2      5   .4000     3.4579 

       13       0.00      0.00    0.0000      0      0   .0000     0.0000 

       14       0.00      0.00    0.0000      0      0   .0000     0.0000 

       15       0.00      0.00    0.0000      0      0   .0000     0.0000 

       16       0.00      0.00    0.0000      0      0   .0000     0.0000 

       17       0.00      0.00    0.0000      0      0   .0000     0.0000 

       18       0.00      0.00    0.0000      0      0   .0000     0.0000 

       19       0.00      0.00    0.0000      0      0   .0000     0.0000

 

I don’t know about you but I find the above snapshots to be very interesting. If I were making UDMs or UPR for Arlington Park – because I see evidence of the APX PolyTrack surface playing like a category 4-5 surface - I would start looking for something other than early speed to base my UDMs and UPR upon. PAL seems like a very logical place to start.

 

How did the remainder of the Arlington meet play out? Here is how PAL, CPace and JPR performed in the time period after the first snapshot through the end of the meet:

 

 

     Data Window Settings:

     Divisor = 999   

     Dirt (All*)  Distance: (All*)

     From Index File: C:\2007\APX\pl_From_05-19-2007_to_09-30-2007.txt

     Data Summary         Win     Place      Show

     Mutuel Totals    8147.00   7536.80   7308.50

     Bet             -9476.00  -9476.00  -9476.00

     Gain            -1329.00  -1939.20  -2167.50

 

     Wins                 589      1175      1750

     Plays               4738      4738      4738

     PCT                .1243     .2480     .3694

 

     ROI               0.8598    0.7954    0.7713

     Avg Mut            13.83      6.41      4.18

 

 

     By: PAL Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1     180.60   1254.00    1.1440    134    627   .2137     1.7192 

        2    -329.60   1268.00    0.7401    100    634   .1577     1.2688 

        3    -403.60   1230.00    0.6719     74    615   .1203     0.9679 

        4    -178.20   1264.00    0.8590     85    632   .1345     1.0819 

        5    -247.20   1154.00    0.7858     57    577   .0988     0.7947 

        6     -85.40   1052.00    0.9188     59    526   .1122     0.9023 

        7    -203.00    814.00    0.7506     31    407   .0762     0.6127 

        8     -21.00    622.00    0.9662     23    311   .0740     0.5949 

        9    -128.20    406.00    0.6842     11    203   .0542     0.4359 

       10     216.60    216.00    2.0028     11    108   .1019     0.8193 

       11    -104.40    148.00    0.2946      3     74   .0405     0.3261 

       12     -25.60     48.00    0.4667      1     24   .0417     0.3352 

       13       0.00      0.00    0.0000      0      0   .0000     0.0000 

       14       0.00      0.00    0.0000      0      0   .0000     0.0000 

       15       0.00      0.00    0.0000      0      0   .0000     0.0000 

       16       0.00      0.00    0.0000      0      0   .0000     0.0000 

       17       0.00      0.00    0.0000      0      0   .0000     0.0000 

       18       0.00      0.00    0.0000      0      0   .0000     0.0000 

       19       0.00      0.00    0.0000      0      0   .0000     0.0000 

 

 

     By: CPace Rank

 

      Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

         1      24.80   1172.00    1.0212    109    586   .1860     1.4963 

         2    -183.60   1174.00    0.8436     95    587   .1618     1.3019 

         3    -122.40   1170.00    0.8954     83    585   .1419     1.1413 

         4     149.00   1176.00    1.1267     84    588   .1429     1.1492 

         5    -354.20   1166.00    0.6962     68    583   .1166     0.9383 

         6    -310.40   1108.00    0.7199     60    554   .1083     0.8712 

         7    -368.00    916.00    0.5983     38    458   .0830     0.6674 

         8    -241.80    652.00    0.6291     19    326   .0583     0.4688 

         9     104.60    432.00    1.2421     14    216   .0648     0.5214 

        10      -8.80    272.00    0.9676     12    136   .0882     0.7098 

        11       5.60    162.00    1.0346      5     81   .0617     0.4966 

        12+    -23.80     76.00    0.6868      2     38   .0526     0.4234

 

 

     By: JPR Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1    -301.40   1172.00    0.7428    136    586   .2321     1.8669 

        2     -47.80   1172.00    0.9592    119    586   .2031     1.6335 

        3     -61.40   1172.00    0.9476     97    586   .1655     1.3315 

        4    -144.20   1172.00    0.8770     73    586   .1246     1.0021 

        5    -145.40   1166.00    0.8753     56    583   .0961     0.7727 

        6     114.00   1104.00    1.1033     50    552   .0906     0.7286 

        7    -401.00    910.00    0.5593     22    455   .0484     0.3889 

        8     -63.20    660.00    0.9042     22    330   .0667     0.5363 

        9    -366.00    436.00    0.1606      3    218   .0138     0.1107 

       10     140.00    272.00    1.5147      6    136   .0441     0.3549 

       11    -103.60    164.00    0.3683      2     82   .0244     0.1962 

       12      51.00     76.00    1.6711      3     38   .0789     0.6351 

       13       0.00      0.00    0.0000      0      0   .0000     0.0000 

       14       0.00      0.00    0.0000      0      0   .0000     0.0000 

       15       0.00      0.00    0.0000      0      0   .0000     0.0000 

       16       0.00      0.00    0.0000      0      0   .0000     0.0000 

       17       0.00      0.00    0.0000      0      0   .0000     0.0000 

       18       0.00      0.00    0.0000      0      0   .0000     0.0000 

       19       0.00      0.00    0.0000      0      0   .0000     0.0000 

 

 

While I never advocate blindly basing your play on a single factor – layered tight model UDMs are what I use in my own live play - It should be clear at this point that paying attention to track surface – and the evidence was clearly there as early as two weeks into the meet – you would have had a much easier time finding success at the windows by focusing on late speed in your UDMs and UPR at Arlington Park in the summer of 2007 instead of JPR and early speed.

 

Interestingly enough, the data suggests that it would have been possible to create a track specific UDM for the 2007 Arlington meet using CPace rank one as a primary factor.  Sometimes the crowd realizes and overreacts to the influence track surface has on the outcome of races.

 

 

Belmont Park 2007

Let’s do the summer at Belmont 2007. I started by using the Quick Index File Extract tool to create a Date Ranged Index for the first two weeks of their 2007 meet. I then ran my Track Profiler UDM through the Data Window using the date ranged index file – which gives me a snapshot of what happened during the first two weeks of the meet. Here’s what the data looks like:

 

     UDM Definition:   TRACKPROFILER

     Divisor:          # UDM Def  Divisor: 999

     Surface Req:      *ANY Surface*

     Distance Req:     *ANY Distance*

 

     CPace:            MinRank= 1  MaxRank= 3  

                       MinVal= -999  MaxVal= 999  

                       MinGap= -999  MaxGap= 999

     Late Pace (last3) MinRank= 2  MaxRank= 5  

                       MinVal= -999  MaxVal= 999  

                       MinGap= -18  MaxGap= 999

     Pace Index:       MinVal= 80  MaxVal= 999

     Race Volatility:  MinVal= 75  MaxVal= 119.99

     Running Style:    ALL

 

 

     Data Window Settings:

     Divisor = 999   

     Filters Applied:

 

     Surface: (ALL*)  Distance: (All*)

     From Index File: C:\2007\BEL\pl_From_05-01-2007_to_05-14-2007.txt

     Data Summary         Win     Place      Show

     Mutuel Totals      40.00     24.70     26.40

     Bet               -40.00    -40.00    -40.00

     Gain                0.00    -15.30    -13.60

 

     Wins                   4         5         7

     Plays                 20        20        20

     PCT                .2000     .2500     .3500

 

 

Now, compare the above results for Belmont to the benchmark results for all dirt surfaces in 2006. What do you see? Based on what you see, how would YOU categorize the dirt surface at BEL? Forget the roi for a second. Pay attention to the win percentages. My own interpretation is that this snapshot makes the BEL surface look an awful lot like all of those category 1-2-3 surfaces I saw when I created the original dirt algorithms for JRating and JPR: Favors early speed strongly and Favors early speed somewhat and Plays fair.

 

How can I say this? Well the win rate for horses selected by my Track Profiler UDM (early speed) in the snapshot is right in line with my Benchmark. Some group of horses has to be hitting the wire first in every data sample. Again, it’s kind of like a see-saw: If early speed horses are winning the races – if their win rates are in line with the benchmark or even elevated slightly – then some other group of horses has to be suffering: In this case closers are the ones suffering – or rather – bettors backing closers are probably suffering most of all.

 

Remember that when I created the dirt surface algorithm for JPR I based it on dirt surfaces behaving as categories 1-2-3. Here’s that first two week BEL snapshot again broken out by JPR Rank:

 

 

     Data Window Settings:

     Divisor = 999   

     Dirt (All*)  Distance: (All*)

     From Index File: C:\2007\BEL\pl_From_05-01-2007_to_05-14-2007.txt

     Data Summary         Win     Place      Show

     Mutuel Totals     616.50    529.90    565.30

     Bet              -668.00   -668.00   -668.00

     Gain              -51.50   -138.10   -102.70

 

     Wins                  47        94       135

     Plays                334       334       334

     PCT                .1407     .2814     .4042

 

     ROI               0.9229    0.7933    0.8463

     Avg Mut            13.12      5.64      4.19

 

 

     By: JPR Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1      -5.10     94.00    0.9457     18     47   .3830     2.7216 

        2      -1.40     94.00    0.9851     10     47   .2128     1.5120 

        3     -40.10     94.00    0.5734      4     47   .0851     0.6048 

        4     -44.80     94.00    0.5234      5     47   .1064     0.7560 

        5      29.80     90.00    1.3311      5     45   .1111     0.7896 

        6     -22.40     72.00    0.6889      3     36   .0833     0.5922 

        7     -29.00     56.00    0.4821      1     28   .0357     0.2538 

        8      99.50     36.00    3.7639      1     18   .0556     0.3948 

        9     -22.00     22.00    0.0000      0     11   .0000     0.0000 

       10     -10.00     10.00    0.0000      0      5   .0000     0.0000 

       11      -4.00      4.00    0.0000      0      2   .0000     0.0000 

       12      -2.00      2.00    0.0000      0      1   .0000     0.0000 

       13       0.00      0.00    0.0000      0      0   .0000     0.0000 

       14       0.00      0.00    0.0000      0      0   .0000     0.0000 

       15       0.00      0.00    0.0000      0      0   .0000     0.0000 

       16       0.00      0.00    0.0000      0      0   .0000     0.0000 

       17       0.00      0.00    0.0000      0      0   .0000     0.0000 

       18       0.00      0.00    0.0000      0      0   .0000     0.0000 

       19       0.00      0.00    0.0000      0      0   .0000     0.0000 

 

 

If you’ve read the Foundations of Database Handicapping Help Doc then you know that win rates for the top ranked JPR horses in the above track profile snapshot are a little above what you’d normally expect. Early speed seems to be doing quite well in the above snapshot.

 

How about late speed?

 

Here is that first two week Belmont track profile snapshot broken out by PAL (JCapper Pace Adjusted Late) –

 

     Data Window Settings:

     Divisor = 999   

     Dirt (All*)  Distance: (All*)

     From Index File: C:\2007\BEL\pl_From_05-01-2007_to_05-14-2007.txt

     Data Summary         Win     Place      Show

     Mutuel Totals     616.50    529.90    565.30

     Bet              -668.00   -668.00   -668.00

     Gain              -51.50   -138.10   -102.70

 

     Wins                  47        94       135

     Plays                334       334       334

     PCT                .1407     .2814     .4042

 

     ROI               0.9229    0.7933    0.8463

     Avg Mut            13.12      5.64      4.19

 

 

     By: PAL Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1     -41.20     94.00    0.5617      9     47   .1915     1.3608 

        2     -60.30     94.00    0.3585      7     47   .1489     1.0584 

        3     -59.30    100.00    0.4070      5     50   .1000     0.7106 

        4      23.50     90.00    1.2611     10     45   .2222     1.5792 

        5      -7.60     94.00    0.9191      7     47   .1489     1.0584 

        6      22.20     72.00    1.3083      4     36   .1111     0.7896 

        7     -58.00     58.00    0.0000      0     29   .0000     0.0000 

        8       6.70     34.00    1.1971      3     17   .1765     1.2541 

        9     130.50     24.00    6.4375      2     12   .1667     1.1844 

       10      -6.00      6.00    0.0000      0      3   .0000     0.0000 

       11      -2.00      2.00    0.0000      0      1   .0000     0.0000 

       12       0.00      0.00    0.0000      0      0   .0000     0.0000 

       13       0.00      0.00    0.0000      0      0   .0000     0.0000 

       14       0.00      0.00    0.0000      0      0   .0000     0.0000 

       15       0.00      0.00    0.0000      0      0   .0000     0.0000 

       16       0.00      0.00    0.0000      0      0   .0000     0.0000 

       17       0.00      0.00    0.0000      0      0   .0000     0.0000 

       18       0.00      0.00    0.0000      0      0   .0000     0.0000 

       19       0.00      0.00    0.0000      0      0   .0000     0.0000 

 

 

I don’t know about you but I find the above snapshots to be very interesting. If I were making UDMs or UPR for Belmont – because I see evidence of the BEL dirt surface playing like a category 1-2 surface - I would be looking to early speed to base my UDMs and UPR upon instead of late speed. JPR and CPace both seem like very logical places to start.

 

How did the remainder of the Belmont meet play out? Here is how JPR, CPace, and PAL performed in the time period after the first two week snapshot through the end of the September, 2007:

 

     Data Window Settings:

     Divisor = 999   

     Dirt (All*)  Distance: (All*)

     From Index File: C:\2007\BEL\pl_From_05-15-2007_to_09-30-2007.txt)

     Data Summary         Win     Place      Show

     Mutuel Totals    3392.30   3378.50   3465.60

     Bet             -4546.00  -4546.00  -4546.00

     Gain            -1153.70  -1167.50  -1080.40

 

     Wins                 321       638       919

     Plays               2273      2273      2273

     PCT                .1412     .2807     .4043

 

     ROI               0.7462    0.7432    0.7623

     Avg Mut            10.57      5.30      3.77

 

 

     By: JPR Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1      41.30    630.00    1.0656    113    315   .3587     2.5402 

        2    -150.20    632.00    0.7623     60    316   .1899     1.3445 

        3      -6.70    632.00    0.9894     54    316   .1709     1.2100 

        4    -161.40    632.00    0.7446     37    316   .1171     0.8291 

        5    -425.00    612.00    0.3056     15    306   .0490     0.3471 

        6    -272.50    540.00    0.4954     17    270   .0630     0.4458 

        7     -47.40    394.00    0.8797     13    197   .0660     0.4673 

        8     -51.40    258.00    0.8008      7    129   .0543     0.3842 

        9     -46.20    144.00    0.6792      4     72   .0556     0.3934 

       10     -54.00     54.00    0.0000      0     27   .0000     0.0000 

       11      23.80     14.00    2.7000      1      7   .1429     1.0116 

       12+     -4.00      4.00    0.0000      0      2   .0000     0.0000

 

 

     By: CPace Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

        1     -93.50    636.00    0.8530     80    318   .2516     1.7814  

        2     -84.80    630.00    0.8654     55    315   .1746     1.2364 

        3    -139.70    634.00    0.7797     53    317   .1672     1.1839 

        4     -77.40    630.00    0.8771     50    315   .1587     1.1240 

        5    -366.30    610.00    0.3995     25    305   .0820     0.5804 

        6    -189.70    540.00    0.6487     25    270   .0926     0.6556 

        7    -108.40    404.00    0.7317     17    202   .0842     0.5959 

        8     -25.90    252.00    0.8972     10    126   .0794     0.5620 

        9     -35.80    140.00    0.7443      5     70   .0714     0.5058 

       10     -16.20     54.00    0.7000      1     27   .0370     0.2623 

       11     -12.00     12.00    0.0000      0      6   .0000     0.0000 

       12+     -4.00      4.00    0.0000      0      2   .0000     0.0000

 

 

     By: PAL Rank

 

     Rank       Gain       Bet       Roi   Wins  Plays     Pct     Impact

       1    -265.30    690.00    0.6155     61    345   .1768     1.2520 

        2    -159.50    720.00    0.7785     71    360   .1972     1.3965 

        3    -212.70    692.00    0.6926     52    346   .1503     1.0642 

        4    -161.40    636.00    0.7462     43    318   .1352     0.9575 

        5     -26.70    598.00    0.9554     42    299   .1405     0.9947 

        6    -217.40    496.00    0.5617     20    248   .0806     0.5710 

        7      51.30    362.00    1.1417     23    181   .1271     0.8998 

        8    -148.00    200.00    0.2600      3    100   .0300     0.2124 

        9      13.60    112.00    1.1214      5     56   .0893     0.6322 

       10     -28.00     28.00    0.0000      0     14   .0000     0.0000 

       11       2.40     10.00    1.2400      1      5   .2000     1.4162 

       12+     -2.00      2.00    0.0000      0      1   .0000     0.0000 

 

 

Again, I almost never advocate basing your play blindly on any one factor. But it should be clear at this point that paying attention to track surface – and the evidence was there as early as two weeks into the meet – you would have done well to focus on JPR and early speed in your UDMs and UPR at Belmont Park in the summer of 2007 while downgrading the importance of late speed.

 

Summary

All racing surfaces have their own individual characteristics and tendencies. It pays to understand them. Using a Track Profiler UDM to establish a benchmark and comparing specific time period track profile snapshots to a benchmark can be an excellent way to get an understanding of what those individual track surface tendencies actually are.

 

 

-jp

 

.